Section 5.3.2, which show that the optimal list price in an inventory-pricing problem (the optimal solution) is decreasing in the inventory on hand (the parameter).

More abstractly, let $X \subset \Re^n$ be a constraint set, $\Theta \subset \Re^l$ be a set of parameter values and $f: X \times \Theta \to \Re$ be an objective function. We need the following definition:

DEFINITION C. 11 A function $f: X \times \Theta \to \Re$ is said to have increasing differences in $(\mathbf{x}, \boldsymbol{\theta})$, if for all $\mathbf{x}' > \mathbf{x}$ and $\boldsymbol{\theta}' > \boldsymbol{\theta}$,

$$f(\mathbf{x}', \boldsymbol{\theta}') - f(\mathbf{x}, \boldsymbol{\theta}') \ge f(\mathbf{x}', \boldsymbol{\theta}) - f(\mathbf{x}, \boldsymbol{\theta}).$$

Define the component-wise minimum (the *meet*) of two vectors \mathbf{x} and \mathbf{y} in \Re^n by

$$\mathbf{x} \wedge \mathbf{y} = (\min\{x_1, y_1\}, \dots, \min\{x_n, y_n\})$$

and the component-wise maximum (the join) of the vectors by

$$\mathbf{x} \vee \mathbf{y} = (\max\{x_1, y_1\}, \dots, \max\{x_n, y_n\}).$$

A set $X \subset \Re^n$ is called a *lattice* if for all \mathbf{x}, \mathbf{y} in X, the meet and joint of \mathbf{x} and \mathbf{y} are also in X. If in addition X is compact (closed and bounded), then the set X is called a *compact sublattice*. A point \mathbf{x}^* is said to be a *greatest element* (respectively, *least element*) of the sublattice X if $\mathbf{x}^* \geq x$ (respectively, $\mathbf{x}^* \leq \mathbf{x}$) for all $\mathbf{x} \in X$. We then have

PROPOSITION C.11 If X is a nonempty, compact sublattice, then X has a greatest and least element.

That is, if X is a compact sublattice, we can always identify a "largest" and "smallest" (component-wise) element of the set X.

Consider next the following definition:

DEFINITION C.12 A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be supermodular in \mathbf{z} if for all \mathbf{z} and \mathbf{z}' in \mathbb{R}^n ,

$$f(\mathbf{z}) + f(\mathbf{z}') \le f(\mathbf{z} \wedge \mathbf{z}') + f(\mathbf{z} \vee \mathbf{z}').$$

If f above is a C^2 function, then it is supermodular if and only if the cross-partial derivatives satisfy

$$\frac{\partial^2}{\partial z_i \partial z_j} f(\mathbf{z}) \ge 0, \quad \forall i, j, i \ne j.$$

So for \mathbb{C}^2 functions, supermodularity corresponds to nonnegativity of the cross-partial derivatives.

Now consider the following optimization problem, for fixed $\theta \in \Theta$,

$$\max \quad f(\mathbf{x}, \boldsymbol{\theta}) \tag{C.5}$$
$$\mathbf{x} \in X,$$

and define the optimal action correspondence (such as a set of optimal solutions)

$$D^*(\boldsymbol{\theta}) = \{\mathbf{x}^* : f(\mathbf{x}^*, \boldsymbol{\theta}) \ge f(\mathbf{x}, \boldsymbol{\theta}) \ \forall \mathbf{x} \in X\}.$$

We want to determine when these optimal solutions are in some sense "increasing" in θ .